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Highlights: 

• A method for the reconstruction of sound radiation fields from camera measurements is proposed. 

• Theoretical background and experimental validation are provided. 

• Reconstructed sound radiation field conform to measurements of array of microphones in an anechoic chamber. 

• The proposed method can be implemented without any specially dedicated facilities. 

• The proposed method does not require time-consuming tests with complex equipment. 

 

Abstract 

In general, the measurement of the sound radiation field by machinery and partitions requires time-

consuming tests, which should be carried out in specially dedicated anechoic/reverberant facilities with 

calibrated sensors and complex acquisition and post processing equipment. This article introduces a two-

step method for the identification from optical measurements of the free-field sound radiation generated by 

flexural vibrations of closed shells. In the first step, the flexural vibration of the shell is reconstructed with 

a frequency domain triangulation technique based on short multi-view video acquisitions made with a single 

high-resolution, high-speed camera. In the second step, the free-field sound radiation is derived from a 

discretized boundary integral formulation. The study is focused on the identification of the sound radiation 

from the flexural vibration of a baffled cylinder model structure. The vibration and sound fields 

reconstructed from the camera measurements are validated against direct measurements taken with a laser 

scanner vibrometer and a microphone array, respectively. Overall, this research demonstrates that optical 

methods based on camera measurements can be suitably employed to produce fast and accurate full-field 



 

2 

 

measurements of sound radiation of closed shells (without the need for a dedicated measurement 

environment, e.g. reverberant, anechoic chambers). 

 

Keywords: videogrammetry; flexural vibration measurement; sound radiation reconstruction; frequency-

domain triangulation. 



 

3 

 

Introduction 

In general, the measurement of sound radiation by machinery or wall structures is carried out in specially 

dedicated facilities involving large reverberant and/or anechoic rooms [1,2] (see also the ISO1 3740:2019, 

3741:2010, 3745:2012). These are rather costly facilities (both to fabricate and to run), which are normally 

available at certification and research centres that provide measurement services to third parties. In cases 

where it is difficult, or too expensive, to move the machinery or structure, sound radiation measurements 

are taken directly in situ where the equipment is installed [1,2] (see also the ISO 3740:2019, 3746:1996, 

3747:2000), although this solution is rather delicate to perform since it should be arranged in such a way 

that the effects of sound reflections from walls or partitions and the effects of flanking noise generated by 

other machineries or plants be minimal. 

The need for increasingly simpler and more practical approaches for the measurement of the sound 

radiation from machinery and partitions has led to quite a few prolific streams of research and technical 

development focused both on new measurement paradigms and on innovative sensors and measurement 

equipment as well as new acoustic facilities (for example small anechoic rooms [3], which can be equipped 

with active noise control systems that cancel low frequency sound reflections from the walls [4-7]). As 

recalled in Ref. [8], already in the 1930s, the idea of detecting nearfield sound intensity was considered a 

viable option for simple in situ measurements of the sound radiation by machinery and partitions, which 

does not require specially dedicated acoustic infrastructures [9]. Here, there is yet quite a lot of research 

work in progress, which involves the making and calibration of the probes [9,10] as well as the automatic 

acquisition and reconstruction of the sound intensity field [11]. Alongside acoustic intensity measurements, 

nearfield acoustic holography too has been the subject of many studies to detect sound radiation [12]. For 

instance, compressive nonstationary near-field acoustic holography has been used to reconstruct 

instantaneous sound fields [13,14]. Moreover, a hybrid nearfield acoustic holography has been proposed to 

reconstruct the sound radiation by sources with irregular geometries [15]. Besides, deep learning techniques 

have been applied to enhance the quality of sound field reconstruction [16]. In parallel, far field methods 

based on microphone arrays (also known as acoustic cameras) are the subject of intensive research too. 

These methods rely on microphone arrays and, in some cases, a dish scatterer to detect the source of noise 

with beamforming methods [17-19]. Here, the research work has been focused on the design of compact 

omnidirectional sound cameras using the three-dimensional acoustic intensimetry [20]. Also, there has been 

quite a lot of activity on the acoustic imaging combing object detection with conventional frequency domain 

beamforming [21,22]. Moreover, direction-of-arrival algorithms have been developed [23], as well as, new 

methods for estimating the sound radiation by moving objects [24]. 

 
1 International Organization for Standardization 
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In parallel to direct acoustic measurements, taking inspiration from the Kirchooff – Helmholtz 

formulation for the sound radiation of vibrating structures [25-28], Rohlfing et al. [29] reconstructed the 

sound radiation produced by the flexural vibration of a flat panel using point measurements taken with a 

scanning laser vibrometer. More precisely, they divided the surface of the panel into a regular grid of 

elementary radiators [28,30] and measured the transversal velocity at their centers with the vibrometer such 

that the sound radiation could then be calculated with a discretized version of the Kirchooff – Helmholtz  

integral equation [25-28], which, for a plane baffled radiator, boils down to the Rayleigh integral [25-28]. 

This idea was taken forward in Refs. [31,32] to derive the sound radiation of structures in terms of radiation 

modes, which, as shown in [28], provide more insights into the phenomenon of sound radiation itself. 

Recently, Gardonio et al. [33-35] have proposed to employ full field camera measurements to 

reconstruct the sound radiation produced by the flexural vibration of structures. Their idea resembles the 

elemental radiators technique discussed above, except that the vibration field is measured with optical 

cameras [36] rather than a scanner laser vibrometer [29,31,32]. With this approach, the acoustics of the 

measurement room, as well as flanking sources or background noise, have no direct effect on the 

reconstruction of the sound field. In principle they can influence the vibration of the structure and thus 

indirectly the sound radiation, but this effect is expected to be negligible for sound radiation in air and in 

large spaces with low reverberation as well as for typical flanking sources and background noise that may 

be encountered in practice. This is quite a relevant advantage since it is expected that the proposed method 

can be suitably implemented for in situ measurements without the need of moving the tested equipment into 

anechoic rooms. Moreover, the camera acquisitions provide fast full-field vibration measurements such that 

the sound radiation can be estimated with denser grids of elements and thus greater accuracy of the sound 

radiation prediction. Also, the experimental work presented in Ref. [34] has showed that, contrary to the 

measurements taken with the scanning laser vibrometer, rather short video acquisitions are required to 

reconstruct the whole vibration field. Thus, the measurement is carried out in nominal ambient conditions 

with no variations of the dynamic response of the structure being tested. 

During the past three decades, vibration measurements using optical cameras has been the subject of 

quite a few studies [36], both because of their high spatial resolution and because of their non-contact nature, 

which is essential when dealing with lightweight structures. Different approaches to reconstructing 

displacements from images have been used, including 2D-Point-Tracking (2DPT) [37,38] and 3D-Point-

Tracking (3DPT) [39] techniques as well as the Digital-Image-Correlation (DIC) method [40,41]. More 

computationally efficient techniques, such as the simplified optical flow method [42] are also available when 

fast postprocessing is required. To measure 3D vibrations using 2D digital images, at least two camera 

views, observing matching points of interest, are required. This is often achieved using a synchronized pair 

of high-speed cameras and the well-established 3D DIC technique [40]. To avoid possible synchronization 

and optical errors in multi-camera setups, the so-called single-camera multi-view methods are currently 

studied actively. These methods often utilize additional optical elements such as mirror systems to project 
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multiple views of the structure surface onto a single camera sensor, reducing the measurement resolution as 

a result [43]. The frequency-domain triangulation method [44] is another technique that enables the use of 

a single camera for spatial vibration measurements, which, exploits full image-sensor resolution. It can be 

implemented with a still-frame camera and does not require synchronization of multiple cameras [45]. 

This paper proposes a general method for the measurement of sound radiation produced by the flexural 

vibration of 3D closed shell structures, which is based on frequency domain triangulation of multi-view 

optical recordings taken with a single camera. The method relies on a fixed high-speed camera that takes 

multi-view recordings of the cylinder model structure, which is suitably rotated around its principal axis in 

between acquisitions. More specifically, it implements a two steps procedure where, first, the flexural 

vibration field is reconstructed via frequency-domain triangulation of multi-view camera acquisitions [44], 

and, second, the sound radiation field is derived from a discretised Kirchooff – Helmholtz integral [25–28]. 

The article is organized into three parts. To start with, Section 2 describes the model structure and the 

test rig considered in this work, which, to provide a simple, but realistic, case study, was chosen as a thin 

walled, baffled, cylinder excited in bending by a radial point force. Then, Section 3 introduces the new 

method proposed for the reconstruction from camera measurements of 3D sound radiation. Finally, Section 

4 shows experimental results where the proposed method has been employed to reconstruct the sound 

radiation fields generated by the time-harmonic flexural vibrations of the baffled thin-walled cylinder. The 

vibration and acoustic fields derived from the optical measurements are validated against direct 

measurements taken with a scanner laser vibrometer and a microphone array respectively. 

Model structure and measurement setups 

As anticipated above, to have a simple and representative case study, both for the reconstruction of the 3D 

flexural vibration from triangulation of multiple optical images and for the analytical derivation of the sound 

radiation with the Kirchhoff-Helmholtz integral, the thin-walled baffled cylinder model structure described 

in Subsection 2.1 below was chosen. In this way, the optical measurements were taken with a single camera 

setup, which, as discussed in the following Subsection 2.2, employed a high speed and high spatial resolution 

camera. Also, to validate the proposed methodology, the laser vibrometer and microphone array setups 

described in the final Subsection 2.3 were used to measure the vibration and acoustic fields respectively. 

1.1. Thin-walled baffled cylinder model-structure and measurement approach 

Figure 1 shows three sketches of the thin-walled cylinder considered in this study, which is made of steel 

and has thickness h = 1 mm, radius R = 149 mm and height H = 296 mm. The cylinder is clamped on rigid 

flanges at the two ends and is also equipped with two cylindrical extensions, which work as acoustic rigid 
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baffles. In this way, the sound radiation generated by the flexural vibration of the baffled cylinder can be 

suitably derived from analytical formulations [26]. For more complex geometries, Boundary Element 

Method (BEM) or Finite Element Method (FEM) numerical approaches should be employed [28]. As will 

be described in detail in Section 3, in this study, the Frequency Response Functions (FRFs) of the radial 

displacements per unit force excitation were first reconstructed from camera measurements with a frequency 

domain triangulation technique [46] at the grid of 62 × 20 = 1240 target points, which, as shown in Figure 

1b, were located at the centres of the mesh of quadrangular elements used for the derivation of the sound 

radiation. Then, as highlighted in Figure 1b,c, the FRFs of the radiated sound pressure per unit force 

excitation were derived with a discretized version of the Kirchooff – Helmholtz integral [25–28] at a grid 

of 24 × 14 = 336 points laying on a horizontal plane that cuts into two sections the cylinder and at two 

grids of 12 × 14 = 168 laying on a vertical plane that cuts into two halves the cylinder. More specifically, 

the FRFs of the sound pressure per unit force excitation at each point in the outer acoustic domain were 

derived with a midpoint-Riemann sum of the Kirchhoff – Helmholtz integral based on the mesh of 

quadrangular elements depicted in Figure 1b [35]. Considering the physics of the sound radiation 

phenomenon, this corresponds to accounting for the superposition of the sound radiated by the radial 

vibration of the mesh of quadrangular elements, assuming each element vibrates in a rigid cylindrical baffle 

of infinite length [26,28]. Here, the sound radiation by a small piston that vibrates on an infinitely long rigid 

cylinder can be suitably derived with analytical expressions as shown in Refs. [47–49] for example (these 

papers provide seemingly different expressions simply because they refer to time-harmonic functions given 

in either complex forms 𝑒±𝑗𝜔𝑡, where 𝜔 is the circular frequency). 

 

Figure 1: (a) Baffled cylinder and derivation of the sound fields in (b) vertical and (c) horizontal planes 

from the radiations of a mesh of quadrangular pistons in the rigid cylindrical baffle. 

The time-harmonic flexural vibration and sound radiation fields per unit force excitation were then 

reconstructed from the vibration and sound radiation FRFs. They were therefore represented considering a 
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fixed instant of time in which the amplitude of the flexural vibrational field of the cylinder is maximum. 

The time-harmonic vibration and acoustic fields were derived at four resonance frequencies of the cylinder 

flexural vibration, that is at 𝑓1 = 618𝐻𝑧, 𝑓2 = 659𝐻𝑧, 𝑓3 = 964𝐻𝑧 and 𝑓4 = 1231𝐻𝑧. As will be shown 

below, in the 500 – 1500 Hz frequency range considered in this study, the flexural response of the cylinder 

is characterised by a low modal overlap [50] such that, at resonance frequencies, the flexural vibration of 

the cylinder is mostly controlled by the resonant flexural mode. Hence, considering a time instant where the 

amplitude of the vibration is maximum, the flexural field closely reproduces the shape of the resonant mode, 

which is normally called “Operating Deflection Shape” (ODS) [51]. Likewise, the acoustic field radiated in 

the proximity of the cylinder, i.e. the acoustic nearfield, is characterised by distinct lobes that replicates the 

circular shape of the flexural mode that controls the resonant response, that is the operating deflection shape, 

at the given resonance frequency. For the resonance frequency 𝑓4 = 1231𝐻𝑧, the map was reconstructed at 

3 4⁄  of the cylinder height since the vibration field was characterised by a nodal line at the midspan of the 

cylinder. In fact, given the symmetry of the vibration field, the sound radiation at the mid-plane would show 

a very small uniform distribution of the sound pressure due to mutual cancellation effects from the anti-

symmetric radiations produced by the vibrations of the top and bottom half of the cylinder. 

1.2. Test rig and camera measurement setup 

Figure 2 shows the baffled cylindrical model structure built for this study. As can be noticed in Figure 2b, 

the cylinder was fixed on two flanges such that it can be considered clamped at the two terminations. Also, 

as shown in Figure 2a, two cylindrical extensions were fixed at the bottom and top side of the cylinder, 

which had been closed with circular disks. The bottom disk was mounted on a base flange via a turning joint 

such that the whole baffled cylinder could be rotated during the measurement campaigns while the optical 

camera and the laser vibrometer were kept fixed. Figure 2b,c show the high-contrast speckle pattern, applied 

to the cylinder surface to facilitate the Digital Image Correlation image-processing stage. Two rows of 

ArUco markers were printed at the top and bottom of the pattern for the automatic extrinsic calibration of 

the multi-view imaging system. 

The cylinder was rotated around its vertical axis between consecutive video acquisitions. In this way, 

high-speed camera footage of the cylinder under stationary broadband random excitation was acquired from 

18 different viewpoints, using the same excitation signal in each measurement. The Photron FASTCAM 

SA-Z high-speed optical camera shown in Figure 2a was used to measure 50.000 12-bit monochrome images 

at 10.000 frames-per-second, with the spatial resolution of 896  896 pixels for each viewpoint, producing 

1.31 terabytes of image-data in total. 
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Figure 2: (a) optical camera measurement setup, (b) cylinder with the speckled surface, (c) details of the 

speckle pattern for the camera (black dots) and laser (green dots) measurements. 

The calibration of the multi-view images was performed in two stages. Firstly, images of a standard 

checkerboard calibration pattern were used to perform the intrinsic camera calibration, to give reference 

optical parameters such as the focal length and the optical centre of the camera, which are then incorporated 

in the so-called intrinsic camera calibration matrix 𝐾 [52]. As the camera optical settings were unchanged 

during the whole image acquisition process, this step was performed only once. Secondly, the ArUco makers 

in the recorded images were combined with their known positions on the cylinder surface to perform the 

extrinsic camera calibration for each of the 18 viewpoints using the Perspective-n-Point algorithm [53]. In 

this way, the perspective camera rotation matrices 𝑅 and translation vectors 𝑡 were also derived for each 

viewpoint 𝑖, giving a fully calibrated multi-view imaging system, with known perspective camera projection 

matrices 𝑃𝑖 [54]: 

 𝑃𝑖 = 𝐾[𝑅𝑖 ∨ 𝑡𝑖]. (1) 

1.3. Laser vibrometer and microphone array measurement setups 

The vibration and sound radiation fields reconstructed from the camera measurements were validated 

against measurements taken respectively with the laser vibrometer and the microphones array shown in 

Figures 3a and 3b,c respectively. To this end, as can be noticed in Figure 2c, the speckle pattern decal 

applied on to the cylinder was enhanced with a grid of green circular markers that served as target points 

for the measurements with the laser vibrometer. The markers were located at the centres of the regular grid 

of quadrangular elements depicted in Figure 1b. The flexural vibrations at the whole set of markers were 

measured with the laser vibrometer oriented in such a way as its vertical measurement plane went through 

the vertical axis of the cylinder. More specifically, the laser automatically scanned the vibrations of the array 

of markers aligned with the laser vertical plane of measurement and then the cylinder was rotated in such a 

way as to measure the neighbouring vertical array of markers and so on. The laser vibrometer detected the 
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spectra of the mobility FRFs for the radial velocities per unit force excitation of the shaker located inside 

the cylinder. 

 

Figure 3: laser vibrometer (a) and microphone array measurement setups for the vertical (b) and  horizontal 

(c) plane maps. 

The sound field on the vertical measurement plane was measured at the two grids of 12 × 14 = 168 

points depicted in Figure 1b with the vertical array of microphones depicted in Figure 3b, which were 

suitably translated in radial direction to get the whole field. Also, the sound field on the horizontal 

measurement plane was measured at the grid of 11 × 104 = 1144 points depicted in Figure 1c with the 

radial array of microphones shown in Figure 3c. Here, considering Figure 4b, as done for the vibration 

measurements with the laser vibrometer, the microphones array was aligned along a radial segment and kept 

in the same position whereas the cylinder was rotated by 360 deg to get the whole field. The measurements 

were carried out in a 500 – 1500 Hz frequency range such that the acoustic wavelength spanned in the range 

comprised between 0.69𝑚 and 0.23𝑚. Hence, the maps depicted in great details the lobes due to the near 

field sound radiation generated by the flexural vibration of the cylinder [28]. 

3D Sound Radiation Reconstruction from Camera Measurements 

The approach proposed for the measurement of the flexural vibration and sound radiation fields from 

multiple images recordings is now presented. To start with, this section describes in detail the measurement 

procedure with the optical camera setup presented in Section 2.2 and shown in Figure 2, as well as the 

frequency domain triangulation from multi-view image acquisitions implemented to detect the radial 

displacements of the grid of marker points. Next, it briefly recalls the derivation of the operation deflection 

shapes that characterise the flexural vibration field at given frequencies. Finally, it describes in detail the 
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integral formulation employed to derive the sound pressure fields based on a Riemann sum of the 

Kirchhoff – Helmholtz integral expression [35].   

1.4. Frequency-domain triangulation for single-camera 3D-FRF measurement 

As anticipated above, in this study, the flexural vibrations of the cylinder are derived from digital images 

taken with a single camera using the frequency-domain triangulation method introduced in Ref. [44]. This 

method reconstructs with a single camera the whole vibration field of the structure. In contrast to classical 

camera vibration measurement methods [36], the multi-view triangulation implemented in this work is not 

based on simultaneous recordings taken with multiple cameras from different viewpoints [55], but instead 

on consecutive recordings taken with a single camera while the structure is rotated between each recording 

and is forced by the same stationary excitation. The measurements are taken with small-amplitude 

excitations that guarantee a linear response of the structure. The image-based displacements provided by 

each recording are then transformed into the frequency-domain to generate the spectra of the physical 

displacements with a frequency-domain triangulation [44]. It is important to stress the fact that the sequence 

of multi-view recordings is taken with separate experiments requiring only a given stationarity excitation 

between consecutive measurements. The frequency-domain triangulation method is capable of 

reconstructing spatial operating deflection shapes (ODS) of linear, time-invariant systems under stationary 

excitation using a single, moving camera, assuming small-amplitude harmonic displacements. 

 

Figure 4: The image-based 3D displacement measurement procedure using frequency-domain triangulation 

and the single-camera multi-view approach. 
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Overall, the method employed in this study can be summarized by the following steps, which are illustrated 

in Figure 4: 

1. Image acquisition, using a moving specimen (see Section 7). 

2. Multiview imaging system calibration (see Section 7). 

3. 2D image-based displacement FRFs identification using Lucas-Kanade DIC [56]. 

4. Frequency-domain multi-view triangulation and computation of dynamic flexibility FRFs. 

The principal steps of this procedure are hereby recalled and then expanded to provide the incipit for the 

subsequent derivation of the vibration and sound radiation fields due to tonal excitations. The details of the 

whole formulation of the frequency-triangulation method can be found in Ref. [44]. 

The process of acquiring images using a perspective camera 𝑃 can be described by a projective 

mapping, where an arbitrary point (𝑥, 𝑦, 𝑧) in space defined by the homogeneous vector 𝑥 = (𝑥, 𝑦, 𝑧, 1)𝑇 is 

mapped by the projection matrix 𝑃 defined in Eq. (1) into its 2D image (𝑥′, 𝑦′) defined by the homogeneous 

vector 𝑥′ = (𝑥′, 𝑦′, 1)𝑇: 

 𝑥′ =
1

𝑤
𝑃𝑥. (2) 

Hereafter the symbol ′ is used to specify a position or displacement in the image space. This mapping is 

linear in the projective space, but non-linear in the Euclidean space, due to the perspective scale factor 𝑤, 

which depends on both the projection matrix 𝑃 as well as the position of the observed point 𝑥 [54]. As a 

result, in general, multiple points in space can be projected onto the same image point, and this makes the 

perspective camera projection non-invertible. However, if the same point in space is observed from at least 

two distinct viewpoints, this information can be used to univocally reconstruct its 3D position 𝑥 in a process 

called triangulation [54]. 

Here, the aim is to use frequency-triangulation of image-based data to reconstruct the dynamic 

flexibility FRFs between the cylinder radial displacements at the grid of markers and the radial force exerted 

on the cylinder. To this end, the time-harmonic radial displacement and radial force are expressed as 

 𝑢𝑟(𝑥𝑐𝑗, 𝑡) = ℜ{𝑢𝑟(𝑥𝑐𝑗, 𝜔)𝑒
𝑗𝜔𝑡} , (3) 

 𝑓𝑟(𝑥𝑐𝑓 , 𝑡) = ℜ{𝑓𝑟(𝑥𝑐𝑓 , 𝜔)𝑒
𝑗𝜔𝑡} , (4) 

where 𝜔 is the circular frequency, 𝑗 = √−1, and 𝑢𝑟(𝑥𝑐𝑗, 𝜔), 𝑓𝑟(𝑥𝑐𝑓 , 𝜔) are respectively the complex 

amplitude of the radial displacement at the j-th marker position 𝑥𝑐𝑗 and the complex amplitude of the time-

harmonic radial force excitation at position 𝑥𝑐𝑓. The dynamic flexibility FRFs between the radial 

displacement of the marker points and force excitation are thus given by 

 𝛼𝑟,𝑗(𝜔) =
𝑢𝑟(𝑥𝑐𝑗,𝜔)

𝑓𝑟(𝑥𝑐𝑓,𝜔)
 . (5) 

The objective of the frequency-triangulation is to derive the complex amplitudes of the time-harmonic radial 

displacements at the centres of the quadrangular elemental radiators. Hence, a relation should be established 

in the form of the perspective camera projection given in Eq. (2) between the complex amplitudes of the 

marker displacements and the complex amplitudes of their image projections. 
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In general, for the j-th marker point depicted on the cylinder, which vibrates harmonically with respect 

to a rest (i.e. reference) position defined with the vector 𝑥𝑐𝑗𝑅𝐸𝐹, the displacement in the image space is given 

by the vector: 

 𝑢𝑐𝑗
′ (𝑡) =

1

𝑤(𝑡)
𝑃𝑥𝑐𝑗(𝑡) −

1

𝑤𝑅𝐸𝐹
𝑃𝑥𝑐𝑗𝑅𝐸𝐹. (6) 

Here the vector 𝑥𝑐𝑗(𝑡), specifies the position of the marker at time 𝑡 whereas the vector 𝑢𝑐𝑗
′ (𝑡) contains the 

two components of the displacement in the image plane at time 𝑡. For small time-harmonic displacements, 

the perspective scale factor at time 𝑡 can be assumed equal to that for the reference position of the marker, 

that is 𝑤(𝑡) = 𝑤𝑅𝐸𝐹, such that the equation above becomes 

 𝑢𝑐𝑗
′ (𝑡) =

1

𝑤𝑅𝐸𝐹
𝑃(𝑥𝑐𝑗(𝑡) − 𝑥𝑐𝑗𝑅𝐸𝐹). (7) 

As reported in Ref. [44], to derive the complex amplitude of the image-based displacement, the discrete 

Fourier transform is applied to Eq. (7) considering 𝑁 images: 

 𝑢𝑐𝑗
′ (𝜔) =

1

𝑤𝑅𝐸𝐹
𝑃

1

𝑁
∑ (𝑥𝑐𝑗(𝑡𝑛) − 𝑥𝑐𝑗𝑅𝐸𝐹)𝑒

−𝑗2𝜋𝑛𝑘 𝑁⁄𝑁−1
𝑛=0 . (8) 

Here the vector 𝑢𝑐𝑗
′ (𝜔) contains the complex amplitudes of the two components of the time-harmonic 

displacement in the image plane. To retrieve the displacement vector in the 3D Euclidean space, the 

displacement in the image plane should be translated back to its reference position in the image space, such 

that, as shown in Ref. [44], the following relation holds 

 𝑢𝑐𝑗
′ (𝜔) + 𝑥𝑐𝑗𝑅𝐸𝐹

′ =
1

𝑤𝑅𝐸𝐹
𝑃(𝑢𝑐𝑗(𝜔) + 𝑥𝑐𝑗𝑅𝐸𝐹). (9) 

In this case, the vector 

 𝑥𝑐𝑗(𝜔) = 𝑢𝑐𝑗(𝜔) + 𝑥𝑐𝑗𝑅𝐸𝐹 (10) 

contains the complex amplitudes of the three components of the marker position in the Euclidean space, 

which, as shown in Ref. [44] can be used to implement a multi-view triangulation in the frequency-domain 

that leads to a univocal displacement vector 𝑢𝑐𝑗(𝜔). 

To retrieve the receptance FRF defined in Eq. (5), the complex amplitude of the radial component of 

the displacement is extracted from the vector 𝑢𝑐𝑗(𝜔) with the following projection 

 𝑢𝑟(𝑥𝑐𝑗, 𝜔) =
𝑢𝑐𝑗(𝜔)·𝑛𝑗

|𝑛𝑗|
 , (11) 

where 𝑛𝑗 is the unit vector normal to the surface of the cylinder at the marker position 𝑥𝑐𝑗. As done for the 

displacements, the complex amplitude of the force excitation is derived with a discrete Fourier transform of 

the force time recording considering 𝑁 samples 

 𝑓𝑟(𝑥𝑐𝑓 , 𝜔) =
1

𝑁
∑ 𝑓𝑟(𝑥𝑐𝑓 , 𝑡𝑛)𝑒

−𝑗2𝜋𝑛𝑘 𝑁⁄𝑁−1
𝑛=0 . (12) 
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1.5. Reconstruction of the flexural vibration field 

Assuming time-harmonic vibrations, the flexural vibration field of the cylinder at given frequencies 𝜔 has 

been reconstructed and depicted in terms of the operational deflection shapes, which can be derived from 

Eq. (3) rewritten in the following trigonometric form: 

 𝑢𝑟(𝑥𝑐𝑗, 𝑡) = 𝑈𝑟(𝑥𝑐𝑗, 𝜔)cos(𝜔𝑡 + 𝜑𝑈(𝑥𝑐𝑗, 𝜔)) . (13) 

Here 𝑈𝑟(𝑥𝑐𝑗, 𝜔) = |𝛼𝑟,𝑗(𝜔)𝑓𝑟(𝑥𝑐𝑓 , 𝜔)| and 𝜑𝑈(𝑥𝑐𝑗, 𝜔) = ∠{𝛼𝑟,𝑗(𝜔)𝑓𝑟(𝑥𝑐𝑓 , 𝜔)} are respectively the 

amplitude and phase of the displacement at each marker point. For synchronous vibrations, the deflection 

shapes show the typical stationary fields characterised by positive and negative lobes. The operational 

deflection shapes can thus be retrieved from Eq. (13) considering an instant of time such that the vibration 

field reaches its maximum amplitude, that is when |cos(𝜔𝑡 + 𝜑𝑈(𝑥𝑐𝑖, 𝜔))| = 1. In general, the deflection 

shape of a structure at a resonance frequency well separated from neighbouring resonance frequencies, such 

that the flexural response is controlled by the resonant mode, can be suitably obtained from the real part of 

the complex amplitude, that is ℜ{𝑢𝑟(𝑥𝑐𝑗, 𝜔)}. To conclude, it should be highlighted that, when the laser 

vibrometer measurements were employed to derive the flexural deflection shapes, then the formulation 

presented in this section was employed setting: 

 𝛼𝑟,𝑗(𝜔) =
𝑌𝑟,𝑗(𝜔)

𝑗𝜔
,   (14) 

where 

 𝑌𝑟,𝑗(𝜔) =
𝑣𝑟(𝑥𝑐𝑗,𝜔)

𝑓𝑟(𝑥𝑐𝑓,𝜔)
 (15) 

are the mobility functions measured by the laser vibrometer. Here, 𝑣𝑟(𝑥𝑐𝑗, 𝜔) = 𝑗𝜔𝑢𝑟(𝑥𝑐𝑗, 𝜔) is the 

complex amplitude of the radial velocity at the marker position; which is given by: 

 𝑣𝑟(𝑥𝑐𝑗, 𝑡) = ℜ{𝑣𝑟(𝑥𝑐𝑗, 𝜔)𝑒
𝑗𝜔𝑡} . (16) 

1.6. Reconstruction of the sound radiation field 

As discussed in Section 2.1 and shown in Figure 1b,c, the radiated sound field has been reconstructed in a 

vertical plane that cuts in two halves the cylinder and in a horizontal plane that cuts in two sections the 

cylinder. Hence, as shown in Figure 4, the sound pressure was derived at a dense grid of points with 

coordinates 𝑥𝑎𝑖 = (𝑟𝑖
′, 𝜃𝑖

′, 𝑧𝑖
′). The acoustic pressure 𝑝(𝑥𝑎𝑖, 𝑡) at position 𝑥𝑎𝑖 was reconstructed considering 

the Kirchooff – Helmholtz integral expression for the sound radiation in free-field by a vibrating body [25–

28]. More specifically, assuming time-harmonic vibrations, and thus time-harmonic sound radiation, the 

sound pressure was taken equal to 

 𝑝(𝑥𝑎𝑖, 𝑡) = ℜ{𝑝(𝑥𝑎𝑖, 𝜔)𝑒
𝑗𝜔𝑡} ,  (17) 
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where 𝑝(𝑥𝑎𝑖, 𝜔) is the frequency-dependent complex amplitude at position 𝑥𝑎𝑖 which was calculated from 

the following Kirchhoff – Helmholtz integral expression: 

 𝑝(𝑥𝑎𝑖, 𝜔) = −∫ (𝑝(𝑥𝑐 , 𝜔)
𝜕𝑔(|𝑥𝑎𝑖−𝑥𝑐|,𝜔)

𝜕𝑟
+ 𝑗𝜔𝜌0𝑔(|𝑥𝑎𝑖 − 𝑥𝑐|, 𝜔)𝑣𝑟(𝑥𝑐 , 𝜔))𝑑𝑆𝑐

❑

𝑆𝑐
 . (18) 

Here 𝜌0 is the density of air and 𝑆𝑐 encompasses the surfaces of the flexible thin-walled cylinder as well as 

the surfaces of the two rigidly walled cylindrical baffles. Also, 𝑣𝑟(𝑥𝑐 , 𝜔) is the complex amplitude of the 

radial velocities at position 𝑥𝑐 and 𝑔(|𝑥𝑎𝑖 − 𝑥𝑐|, 𝜔) is the free-space 1st-kind Green’s function, 

 𝑔(|𝑥𝑎𝑖 − 𝑥𝑐|, 𝜔) =
𝑒𝑗𝑘|𝑥𝑎𝑖−𝑥𝑐|

4𝜋|𝑥𝑎𝑖−𝑥𝑐|
 . (19) 

As highlighted in Refs. [26,57,58], this function gives the sound pressure at position 𝑥𝑎𝑖 = (𝑟𝑖
′, 𝜃𝑖

′, 𝑧𝑖
′) 

generated by a point source (i.e. a monopole source with significantly smaller dimension than the acoustic 

wavelength) at position 𝑥𝑐 = (𝑅, 𝜃, 𝑧) on the cylinder. It is important to note that this Green’s function 

depends on the distance between the two positions and not on their positions. The integral Eq. (18) refers to 

the complex amplitude of the radial velocity of the cylinder, 𝑣𝑟(𝑥𝑐 , 𝜔), as well as the complex amplitude of 

the acoustic pressure, 𝑝(𝑥𝑐 , 𝜔), which develops on the surface of the flexible cylinder and rigid baffles. The 

solution of this integral is thus not straightforward and requires a two steps procedure as discussed in Ref. 

[28] for example. Moreover, normally, the integration over the boundary surface cannot be solved 

analytically except when a Green’s function 𝐺(|𝑥𝑎𝑖 − 𝑥𝑐|, 𝜔) can be constructed in such a way as to satisfy 

Neumann’s boundary condition, that is 𝜕𝐺(|𝑥𝑎𝑖 − 𝑥𝑐|, 𝜔) 𝜕𝑟 = 0⁄  on the surface of the cylinder and baffles 

(as specified in [26,57,58], the Neumann boundary condition implies that the sound radiation from the 

elemental source be scattered by the boundary surface of the flexible cylinder and two baffles as if they were 

rigid walls). In this case the unknown sound pressure on the boundary surface 𝑝(𝑥𝑐 , 𝜔) vanishes and the 

integral in the Kirchhoff – Helmholtz equation simplifies into the following expression: 

 𝑝(𝑥𝑎𝑖, 𝜔) = −𝑗𝜔𝜌0 ∫ (𝐺(|𝑥𝑎𝑖 − 𝑥𝑐|, 𝜔)𝑣𝑟(𝑥𝑐 , 𝜔))𝑑𝑆𝑐
❑

𝑆𝑐
 . (20) 

In general, this integral can be suitably solved analytically provided the boundary surface can be defined 

with respect to a single coordinate of a specific coordinate system (e.g. cylindrical coordinates in this case) 

and the acoustic wave equation is separable in such coordinate system [26]. This is indeed the case for the 

baffled cylinder vibrating structure considered in this study, for which the following analytical solution can 

be derived with respect to the cylindrical coordinate system 𝑅, 𝜃, 𝑧 [47–49]: 

 𝑝(𝑥𝑎𝑖, 𝜔) = −𝑗
𝜔𝜌0

4𝜋2
∫ ∫ 𝑣𝑟(𝑅, 𝜃, 𝑧, 𝜔)∑ cos(𝑛(𝜃𝑖

′ − 𝜃))𝐼𝑛(𝑧𝑖
′ − 𝑧)𝑑𝜃𝑑𝑧+∞

𝑛=−∞
𝐿

0

2𝜋

0
 , (21) 

where 

 𝐼𝑛(𝑧𝑖
′ − 𝑧) = ∫

cos(𝑘𝑧(𝑧𝑖
′−𝑧))

𝑘𝑟𝑅

𝐻𝑛
(2)

(𝑘𝑟𝑟𝑖
′)

𝐻𝑛
(2)′

(𝑘𝑟𝑅)
𝑑𝑘𝑧

+∞

−∞
 . (22) 

In these equations, 𝑘 = 𝜔 𝑐⁄  is the acoustic wavenumber and 𝑐 is the speed of sound in air. Also, 𝑘𝑧 is the 

projection of the acoustic wavenumber into the longitudinal direction of the cylinder and 𝑘𝑟 = √𝑘2 − 𝑘𝑧
2. 

Finally, 𝐻𝑛
(2)
, 𝐻𝑛

(2)′
 are the 2nd-kind Hankel function and its derivative respectively [59]. Eq. (22) holds for 
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time dependence taken in the complex form 𝑒𝑗𝜔𝑡 (if 𝑒−𝑗𝜔𝑡 was assumed to describe the co-sinusoidal time-

harmonic vibration, then Eq. (21) would have had in front a term +𝑗 and would have encompassed the 1st-

kind Hankel function and therein derivative, that is 𝐻𝑛
(1)

 and 𝐻𝑛
(1)′

 respectively [59]. 

Since the radial velocity is reconstructed with the camera measurements at the grid of points shown in 

Figure 1b,c, the surface integral in Eq. (21) has been calculated numerically with a middle Riemann sum 

considering the mesh of quadrangular radiators defined on the surface of the cylinder such that: 

 𝑝(𝑥𝑎𝑖, 𝜔) ≈ −𝑗
𝜔𝜌0𝑆𝑒

4𝜋2
∑ 𝑣𝑟(𝑥𝑐𝑗 , 𝜔)∑ cos(𝑛(𝜃𝑖

′ − 𝜃𝑗))𝐼𝑛(𝑧𝑖
′ − 𝑧𝑗)

+∞
𝑛=−∞

𝑁𝑒
𝑗=1 . (23) 

In this equation, 𝑆𝑒 and 𝑁𝑒 indicate the area and the number of the surface elements, whose centers are 

identified by the coordinates 𝑥𝑐𝑗 = (𝑅, 𝜃𝑗, 𝑧𝑗).  After a few mathematical steps, this equation can be further 

simplified into the following expression 

 𝑝(𝑥𝑎𝑖, 𝜔) ≈ −𝑗
𝜔𝜌0𝑆𝑒

2𝜋2
∑ 𝑣𝑟(𝑥𝑐𝑗 , 𝜔)∑ 𝜀𝑛cos(𝑛(𝜃𝑖

′ − 𝜃𝑗))𝐼𝑛(𝑧𝑖
′ − 𝑧𝑗)

𝑁
𝑛=0

𝑁𝑒
𝑗=1 , (24) 

where 𝜀𝑛 = 1 for 𝑛 = 0, 𝜀𝑛 = 2 for 𝑛 > 0, and the infinite summation is approximated into the sum of the 

first 𝑁 + 1 terms 𝐼𝑛  

 𝐼𝑛(𝑧𝑖
′ − 𝑧𝑗) = ∫

cos(𝑘𝑧(𝑧𝑖
′−𝑧𝑗))

𝑘𝑟𝑅

𝐻𝑛
(2)

(𝑘𝑟𝑟𝑖
′)

𝐻𝑛
(2)′

(𝑘𝑟𝑅)
𝑑𝑘𝑧

∞

0
 . (25) 

Note that when 𝑘𝑧 > 𝑘, 𝑘𝑟 = √𝑘2 − 𝑘𝑧
2 becomes imaginary, and, in this case, it was set (see [59]) 

 
𝐻𝑛
(2)

(𝑘𝑟𝑟𝑖
′)

𝑘𝑟𝑅𝐻𝑛
(2)′

(𝑘𝑟𝑅)
=

𝐾𝑛(|𝑘𝑟|𝑟𝑖
′)

|𝑘𝑟|𝑅𝐾𝑛
′ (|𝑘𝑟|𝑅)

 ,  (26) 

where 𝐾𝑛denotes the modified Bessel function of the second kind. The integral in Eq. (25) was approximated 

into a middle Reimann sum too, such that 

 𝐼𝑛(𝑧𝑖
′ − 𝑧𝑗) ≈ ∑

cos(𝑚∆𝑘𝑧(𝑧𝑖
′−𝑧𝑗))

√𝑘2−(𝑚∆𝑘𝑧)
2𝑅

𝐻𝑛
(2)

(√𝑘2−(𝑚∆𝑘𝑧)
2𝑟𝑖

′)

𝐻𝑛
(2)′

(√𝑘2−(𝑚∆𝑘𝑧)
2𝑅)

𝛥𝑘𝑧
𝑀
𝑚=0  . (27) 

Here 𝛥𝑘𝑧 and 𝑀 were selected to achieve a reasonable approximation of the integral, as specified in 

Appendix A which reports the MatLab code that has been developed and used in this study to generate the 

acoustic maps presented into the forthcoming section. 

Overall, the complex amplitude of the time-harmonic sound pressure at the i-th position generated by 

the radial vibration of the j-th quadrangular element was suitably expressed as follows 

 𝑝(𝑥𝑎𝑖, 𝜔) = 𝑍𝑖𝑗(𝜔)𝑣𝑟(𝑥𝑐𝑗, 𝜔) (28) 

where, according to Eq. (24), 

 𝑍𝑖𝑗(𝜔) = −𝑗
𝜔𝜌0𝑆𝑒

2𝜋2
∑ 𝜀𝑛cos(𝑛(𝜃𝑖

′ − 𝜃𝑗))𝐼𝑛(𝑧𝑖
′ − 𝑧𝑗)

𝑁
𝑛=0 . (29) 

Now, recalling that 𝑣𝑟(𝑥𝑐𝑗, 𝜔) = 𝑗𝜔𝑢𝑟(𝑥𝑐𝑗, 𝜔) and using Eq. (5) into Eq. (28) gives 

 𝑝(𝑥𝑎𝑖, 𝜔) = 𝑗𝜔𝑍𝑖𝑗(𝜔)𝛼𝑟,𝑗(𝜔)𝑓𝑟(𝑥𝑐𝑓 , 𝜔) . (30) 

In conclusion, as seen for the flexural vibration field in Section 3.2, for time-harmonic vibrations, the sound 

radiation field of the cylinder at given frequencies 𝜔 can also be reconstructed and depicted in terms of 



 

16 

 

“operational acoustic shapes”, which can be derived from Eq. (17) rewritten in the following trigonometric 

form: 

 𝑝(𝑥𝑎𝑖, 𝑡) = 𝑃(𝑥𝑎𝑖, 𝜔)cos(𝜔𝑡 + 𝜑𝑃(𝑥𝑎𝑖, 𝜔)) . (31) 

where, considering Eq. (30), 𝑃(𝑥𝑎𝑖, 𝜔) = |𝑝(𝑥𝑎𝑖, 𝜔)| = |𝑗𝜔𝑍𝑖𝑗(𝜔)𝛼𝑟,𝑗(𝜔)𝑓𝑟(𝑥𝑐𝑓, 𝜔)| and 𝜑𝑃(𝑥𝑎𝑖, 𝜔) =

∠{𝑝(𝑥𝑎𝑖, 𝜔)} = ∠{𝑗𝜔𝑍𝑖𝑗(𝜔)𝛼𝑟,𝑗(𝜔)𝑓𝑟(𝑥𝑐𝑓 , 𝜔)} are respectively the amplitude and phase of the sound 

pressure at each point where the sound field is depicted. Here, the operational acoustic shapes were derived 

from Eq. (31) with respect to the same instant of time of maximum amplitude of the flexural vibration fields, 

that is when |cos(𝜔𝑡 + 𝜑𝑈(𝑥𝑐𝑖, 𝜔))| = 1. Equations (30) and (31) indicate that, for time-harmonic 

vibrations, the amplitude of the acoustic pressure at a given instant of time is modulated by the structural 

response of the thin-walled cylinder, i.e. via the dynamic flexibility 𝛼𝑟,𝑗(𝜔), and by the acoustic response 

generated by the radiation of the baffled cylinder, i.e. via the acoustic impedance 𝑍𝑖𝑗(𝜔). To conclude it is 

noted that in case the laser vibrometer measurements were employed to generate the acoustic field, then the 

formulation presented in this section was employed setting 

 𝑗𝜔𝛼𝑟,𝑗(𝜔) = 𝑌𝑟,𝑗(𝜔),   (32) 

where 𝑌𝑟,𝑗(𝜔) are the mobility functions measured by the laser vibrometer as defined in Eq. (15). 

Measurement results 

The methodology proposed above to reconstruct the cylinder flexural vibration and sound radiation fields is 

now assessed for camera measurements taken with the experimental apparatus presented in Section 2.2 and 

shown in Figure 2a. The vibration maps reconstructed from the camera measurements are validated on a 

qualitative level with respect to vibration maps obtained from the laser vibrometer measurements taken with 

the setup described in Section 2.3 and Figure 3a. Also, the acoustic maps derived from the camera 

measurements are validated on a qualitative level with those calculated from the laser vibration 

measurements and with those obtained directly from acoustic measurements taken with the setups described 

in Section 2.3 and Figure 3b,c. 

Before moving into the analysis of the reconstructed flexural vibration and sound radiation maps, to 

provide a background understanding of the flexural response and sound radiation of the cylinder, the flexural 

vibration and the sound radiation of the cylinder are first analysed in the frequency domain with respect to 

the spectrum of the spatially averaged flexural vibration per unit force excitation and the spectrum of the 

sound pressure per unit force excitation at a given monitor point 𝑥𝑎𝑚 = (𝑟𝑚
′ , 𝜃𝑚

′ , 𝑧𝑚
′ ) of coordinates 

 𝑟𝑚
′ = 219𝑚𝑚, 𝜃𝑚

′ = 0𝑑𝑒𝑔, 𝑧𝑚
′ = 0𝑚𝑚. Then the comparative analysis between the maps of the cylinder 

flexural vibration and sound radiation obtained from the camera measurements and from the laser and 

microphones measurements are presented and analysed. 
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1.7. Spectra of the spatially averaged flexural vibration and sound pressure at a 

monitor point per unit force excitation 

The global flexural response of the thin-walled cylinder is assessed with respect to the time-averaged total 

flexural kinetic energy, which is given by the following expression: 

 �̅� = lim
𝑇→∞

1

𝑇
∫ ∫

❑

𝑆𝑐

1

2

𝑇

0
𝜌𝑐ℎ𝑣𝑟(𝑥𝑐 , 𝑡)

2𝑑𝑆𝑐𝑑𝑡 , (33) 

where, according to Eq. (16) 𝑣𝑟(𝑥𝑐 , 𝑡) is the radial velocity of the cylinder at position 𝑥𝑐𝑗 = (𝑅, 𝜃, 𝑧), 𝜌𝑐 is 

the density of the cylinder material and ℎ, 𝑆𝑐 are the thickness and lateral area of the cylinder. For time 

harmonic vibrations, this equation becomes 

 �̅�(𝜔) =
𝜌𝑐ℎ

4
∫ |𝑣𝑟(𝑥𝑐 , 𝜔)|

2𝑑𝑆𝑐
❑

𝑆𝑐
 (34) 

where 𝑣𝑟(𝑥𝑐𝑗, 𝜔) is the complex amplitude of the radial velocity at position 𝑥𝑐. Considering the dynamic 

flexibility FRFs measured with the camera setup 

 �̅�(𝜔) ≈
𝜔2𝑀𝑐

4𝑁𝑒
∑ |𝛼𝑟,𝑗(𝜔)|

2|𝑓𝑟(𝑥𝑐𝑓 , 𝜔)|
2𝑁𝑒

𝑗=1 ,  (35) 

whereas considering the mobility FRFs measured with the laser vibrometer 

 �̅�(𝜔) ≈
𝑀𝑐

4𝑁𝑒
∑ |𝑌𝑟,𝑗(𝜔)|

2|𝑓𝑟(𝑥𝑐𝑓 , 𝜔)|
2𝑁𝑒

𝑗=1  . (36) 

Here 𝑀𝑐 is the mass of the cylinder, 𝑁𝑒 is the number of quadrangular elements. 

 

Figure 5: Spectrum of the total flexural kinetic energy per unit force excitation derived from laser 

vibrometer measurements with the deflection shapes at the resonance frequencies. 

To start with, Figure 5 shows the spectrum of the time-averaged total flexural kinetic energy per unit 

force excitation derived with Eq. (36) from the laser vibrometer measurements in a frequency range 

comprised between 500 and 1500 Hz. The figure encompasses small pictures with the deflection shapes at 
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the resonance frequencies. In general, the spectrum is characterised by distinct resonance peaks, which 

suggests that in the 500 – 1500 Hz range the flexural response is characterised by a low modal overlap [50]. 

Indeed, apart from few cases, the deflection shapes at the resonance frequencies show the typical regular 

pattern for the flexural natural modes of a clamped cylinder (e.g. see Refs. [60–63]). In general, the 

deflection shapes show quite high circumferential mode orders that span from 5 to 11 and. rather low axial 

mode orders equal to 1 or 2. In the latter case, as can be noticed in Figure 5, the mode shapes are 

characterised by a circumferential nodal line exactly in the middle span of the cylinder height. There is just 

a deflection shape at about 1440 Hz, which shows a mode order 3 in axial direction. 

 

Figure 6: Spectrum of the total flexural kinetic energy per unit force excitation derived from camera 

measurements (red line) with the deflection shapes at the resonance frequencies (compared with laser 

vibrometer measurements, blue line). 

Moving to the flexural vibrations reconstructed from the camera measurements, the red line in Figure 

6 shows the spectrum of the time-averaged total flexural kinetic energy per unit force excitation derived 

with the formulation presented in Sections 2.1 and 2.2 and then calculated with Eq. (35) in the 500 – 1500 

Hz frequency range. To allow a direct comparison, the spectrum obtained from the laser vibration 

measurements is reported as well with the blue line. The two spectra overlap quite well. There are small 

shifts of few resonance frequencies and also small mismatches of the amplitudes of the resonance peaks. 

These small gaps are most likely due to the fact that the measurements had not been taken simultaneously. 

Moreover, the measurement taken with the laser vibrometer took several hours such that the response of the 

clamped cylinder was affected by a significant variability induced by ambient temperature changes and 

heating effects produced by the shaker located inside the cylinder. The spectrum obtained from the camera 

measurements is slightly noisier that that derived from the laser vibrometer measurements, particularly at 

the higher frequency end of the measurement range. Nevertheless, the two measurements show quite a 

remarkable global agreement, which is confirmed also by the deflection shapes reported in the two figures 
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for the vibrometer and camera measurements respectively. The deflection shapes at higher resonance 

frequencies depicted in Figure 6 show a comparatively more irregular shape than those plotted in Figure 5. 

This indicates that indeed, the results obtained from the camera measurements are slightly less accurate than 

those obtained from the laser vibration measurements, although as will be shown below, and can already be 

seen in the spectral analysis, they have little impact on the overall vibration and thus on the sound radiation. 

 

Figure 7: Spectra of the sound pressure at a monitor point per unit force excitation derived from microphone 

measurement (black lines), laser vibrometer measurements (blue line) and camera measurements (red line). 

The sound radiation is instead assessed at the monitor position 𝑟𝑚
′ = 219𝑚𝑚, 𝜃𝑚

′ = 0𝑑𝑒𝑔, 𝑧𝑚
′ = 0𝑚𝑚 

with respect to the time-averaged sound pressure per unit force excitation either measured with a 

microphone (black lines in Figure 7) or derived from Eq. (30) using the vibration FRFs acquired with the 

laser vibrometer (blue line in Figure 7a) or reconstructed from the camera measurements (red line in Figure 

7b). Comparing first the spectrum of the sound pressure measured with the microphone with the spectrum 

in Figures 5 for the spatially averaged vibration measured with laser vibrometer it is noted that the two 

spectra show similar features, although the resonance peaks in the acoustic spectrum have quite an uneven 

range of amplitudes and there are some antiresonance troughs in between resonances. This is the result of 

the fact that, at each frequency, the amplitude of the acoustic field is modulated by the radiation efficiency 

of the cylinder flexural modes that mainly contribute to the response at that frequency [28]. Therefore, the 

sound pressure at certain resonance frequencies, where the response is controlled by the resonant mode 

[28,50], may result significantly attenuated when the resonant mode has a low radiation efficiency. 

Moreover, the acoustic spectrum provides the sound pressure at a point where, as it will be shown in the 
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forthcoming section, at certain frequencies the sound field may be characterised by destructive interference 

effect that lessen significantly the sound pressure. The plots in Figure 7 show that, in general, the spectra of 

the sound pressure derived from the laser vibrometer (blue line in Figure 7a) or the camera (red line in 

Figure 7b) measurements reproduce rather well the principal features of the spectrum measured directly 

with the microphone. There are some marked differences over small frequency bandwidths, whose nature 

is difficult to identify. In fact, the spectra based on direct measurements of the sound pressure may have 

been affected by small noise (e.g. the acquisition system that was kept in the measurement room) and 

flanking (e.g. structure-borne noise due to vibrations transmitted from the cylinder to the floor of the 

anechoic room). Instead, the spectrum derived from the laser vibrometer measurements may have been 

affected by the variability of the flexural response of the cylinder during the long-lasting measurements 

(several hours). Finally, the spectrum derived from the camera measurements may have been limited by the 

spatial resolution of the camera employed in this work. Rather importantly, the three set of measurements 

couldn’t be taken simultaneously and thus the response of the structure may have changed from one 

measurement to another. Nevertheless, the spectra shown in Figure 7a,b indicate that the proposed approach 

based on the reconstruction of the sound radiation using a discretized version of the Kirchhoff-Helmholtz 

integral and the vibration field reconstructed from multi-view measurements taken with an optical camera 

can be successfully employed to derive the sound radiation from a closed shell over a wide audio frequency 

range. 

1.8. Flexural vibration and sound radiation fields from camera and laser-

microphones measurements 

This section presents the maps of the flexural vibration and sound radiation fields of the baffled cylinder 

model structure reconstructed from multi-view camera acquisitions taken with the setup shown in Figure 2 

and measured with the laser vibrometer shown in Figure 3a and the microphones array shown in Figure 

3b,c. The vibration and sound radiation fields have been reconstructed and measured for time-harmonic 

force excitations at four resonance frequencies; that is at 𝑓1 = 618𝐻𝑧, 𝑓2 = 659𝐻𝑧, 𝑓3 = 964𝐻𝑧 and 𝑓4 =

1231𝐻𝑧. As can be noticed in Figures 5 and 6, apart from few resonances, the spectrum of the cylinder 

flexural vibration shows sharp peaks, which suggests that, in the 500 – 1500 Hz frequency range, the flexural 

vibration is characterised by a low modal overlap [50] such that, at most resonance frequencies, the response 

is controlled by the resonant mode only as, indeed, one can notice in the small views of the deflection shapes 



 

21 

 

 

Figure 8: Vibration and sound radiation fields reconstructed from (a) camera measurements and KH 

simulation, (b) laser-vib. measurements and KH simulation, (c) laser-vib. measurements and microphones-

array measurements at the resonance frequency fr = 618 Hz. 

 

Figure 9: Vibration and sound radiation fields reconstructed from (a) camera measurements and KH 

simulation, (b) laser-vib. measurements and KH simulation, (c) laser-vib. measurements and microphones-

array measurements at the resonance frequency fr = 659 Hz. 
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Figure 10: Vibration and sound radiation fields reconstructed from (a) camera measurements and KH 

simulation, (b) laser-vib. measurements and KH simulation, (c) laser-vib. measurements and microphones-

array measurements at the resonance frequency fr = 964 Hz. 

 

Figure 11: Vibration and sound radiation fields reconstructed from (a) camera measurements and KH 

simulation, (b) laser-vib. measurements and KH simulation, (c) laser-vib. measurements and microphones-

array measurements at the resonance frequency fr = 1231 Hz. 
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reported on the graphs themselves. Accordingly, it is expected that the radiated sound field near the cylinder 

surface should be characterised by a circle of acoustic lobes that comply with the circumferential lobes of 

the resonating flexural mode. The reconstructed and measured acoustic fields are depicted in Figures 8 – 

11. More specifically, the maps (a) show the vibration and acoustic fields reconstructed from camera 

measurements. The maps (b) show the vibration and acoustic fields obtained directly from, and 

reconstructed from, the laser vibrometer measurements. Finally, the maps (c) show the fields obtained from 

direct measurements with the laser vibrometer and the microphones array respectively. 

Figure 8 shows that the time-harmonic vibration field at 𝑓1 = 618𝐻𝑧 is characterised by the natural flexural 

mode with axial mode order 𝑛𝑧 = 1 and circumferential mode order 𝑛𝜃 = 5. The field reconstructed from 

the camera measurement depicted in (a) closely overlaps with that measured with the laser vibrometer shown 

in (b) and (c). The magnitude of the field derived from the laser vibrometer measurements is slightly bigger 

than that obtained from the camera measurements. This mismatch is however marginal and possibly due to 

the fact that the two measurements could not be taken simultaneously, primarily because the camera 

acquisitions took much less time than the measurements with the laser vibrometer. The acoustic map in (a) 

obtained from the camera measurements shows that, in the vicinity of the cylinder, the radiated acoustic 

field in the horizontal midplane is characterised by 10 lobes, which closely replicates the wavy shape of the 

flexural mode in circumferential direction. The same effect is seen in the vertical plane where the acoustic 

field is characterised by a single lobe that matches the vibration field in vertical direction. The acoustic field 

(a) reconstructed from the camera measurements agrees quite well both with that reconstructed from the 

laser vibrometer measurements shown in (b) and with that measured directly with the microphones array 

depicted in (c). The nearfield lobes in (b) extend over a slightly bigger area, but this may be the result of the 

small mismatch in the amplitude of the camera and laser vibrometer vibration fields discussed above. 

Instead, the lobes in (c) extend over a slightly smaller surface, and this could be the result of the 

approximations introduced by the measurement setup. In general, the small differences between the 

reconstructed and measured vibration and sound fields could be simply due to the fact that the measurements 

cannot be taken simultaneously and thus the response of the cylinder as well as the excitation generated by 

the shaker may have changed a little from measurement to measurement. 

Moving to the time-harmonic excitation at 𝑓2 = 659𝐻𝑧, Figure 9, shows that the vibration field is 

controlled by the natural flexural mode with axial mode order 𝑛𝑧 = 1 and circumferential mode order 𝑛𝜃 =

7. Here too, contrasting the three vibration maps, the field reconstructed from the camera measurement in 

(a) overlaps quite well with that measured with the laser vibrometer in (b) and (c). The acoustic nearfield 

reconstructed from the camera measurements shown in (a) is characterised 14 lobes with alternating 

positive-negative sound pressure in the horizontal mid plane and a single lobe in the vertical plane, which 

copy the wavy shape of the flexural mode in circumferential and axial directions. The acoustic field (a) 

reconstructed from the camera measurements agrees rather well with that measured directly with the 

microphones array depicted in (c) apart from small mismatches, which, in this case too, are likely to be due 
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to the fact that the two sets of measurements could not be taken simultaneously. Also, the acoustic field (a) 

closely replicates that reconstructed from laser vibrometer measurements shown in (b) apart from the lobes 

on the left-hand side, which, however, were not properly reconstructed from the laser vibration 

measurements that presented small errors in that area. 

Considering now Figure 10, the vibration measurements show that the time-harmonic vibration field at 

𝑓3 = 964𝐻𝑧 is controlled by the natural flexural mode with axial mode order 𝑛𝑧 = 1 and circumferential 

mode order 𝑛𝜃 = 9. Again, the field in (a) obtained from the cameras measurements agrees well with that 

in (b) and (c) measured directly with the laser vibrometer. Here, the shape of the radiated acoustic field is 

somewhat more complex than that found at the first two resonance frequencies. Once more, the field in the 

horizontal plane presents a ring of lobes with alternating positive-negative sound pressure that somehow 

replicates the wavy vibration field in circumferential direction of the cylinder. However, in this case, there 

is also a second ring formed by a total of 6 bigger lobes, yet with alternating positive-negative sound 

pressures. These features are found too in the acoustic fields reconstructed from the laser vibrometer 

measurements and in those measured directly with the array of microphones. Here, the shape and the 

intensity of the small lobes adjacent to the cylinder are not the same for all lobes. This is probably the result 

of two concurrent effects. On the one hand the vibration field with high circumferential mode order 

generates these smaller lobes, whose shape and intensity can be affected primarily by small errors in the 

measurements. Also, the longitudinal welding of the cylinder wall may have had a bigger impact on the 

sound radiation. These features reflect quite significantly on the lobe in the vertical plane too. In fact, the 

small deviations in circumferential directions of the nearfield lobes, generate quite significant differences 

in the sound fields depicted in the vertical planes. This mismatch could be due to the fact that the acoustic 

measurements on the vertical plane were taken with a small angular offset too. Overall, the results presented 

in Figure 10 confirm a good agreement of the vibration and sound radiation fields reconstructed from the 

camera measurements with both those obtained from the laser vibrometer measurements and those measured 

directly with the laser vibrometer and microphone array. 

To conclude, the maps depicted in Figure 11 for the flexural vibration and sound radiation at 𝑓4 =

1231𝐻𝑧 are analysed here. As can be seen in the top pictures, in this case the flexural vibration field is 

characterised by a flexural mode with axial mode order 𝑛𝑧 = 2 and circumferential mode order 𝑛𝜃 = 6. 

Hence, the vibration field is cut in two sections along the length, with a circular nodal line at the middle 

span, which divides the alternating vibration lobes in two rings having an angular offset such that the 𝑛𝑧 =

2 positive and negative vibration lobes develop along the length. Here the vibration field (a) reconstructed 

from the camera measurements is slightly irregular, although, overall, it reproduces the shape obtained from 

the measurement taken with the laser vibrometer (b) and (c). This is likely to be caused by the fact that, as 

can be noticed in the spectrum plotted in Figure 6, the measurements are close to the upper limit of the 

frequency range that can be handled by the camera. Nevertheless, as can be seen in the map (a), the sound 

field reconstructed from the camera acquisitions, is quite smooth and, in fact, it replicates reasonably well 
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both that reconstructed from the laser vibrometer measurement in (b) and that measured directly with the 

arrays of microphones in (c). Here again the acoustic field is characterised by two rings of lobes having 

alternated positive-negative sound pressures. The inner ring of lobes conforms to the wavy flexural vibration 

with circumferential mode order 𝑛𝜃 = 6. The sound field in the vertical plane reconstructed from the camera 

acquisitions (a) shows the two positive-negative sound pressure lobes that conform to the vibration field in 

axial direction. The field replicates quite well that generated from the vibration measurements taken with 

the vibrometer as well as that measured directly with the microphones. Overall, despite the vibration field 

reconstructed from the camera measurements showed quite an irregular shape, the resulting acoustic field 

calculated with the approximated Kirchhoff-Helmholtz formulation is rather smooth and, also, agrees 

reasonably well with those either reconstructed from the laser vibrometer measurements or measured 

directly with the microphones array. This phenomenon was noticed and examined in Ref. [34] too, which 

demonstrated how the irregular vibration field is actually characterised by a random distribution of small 

errors due to the digitalization of the images in the camera. Nevertheless, since the sound pressure at each 

point of the free field results from the radiation generated by the whole surface of the cylinder, the effects 

of these errors are cumulated in such a way as they cancel out and thus a rather accurate map of the sound 

radiation is produced. 

 

Table 1: Differences of the spatially averaged cylinder radial velocities estimated from the camera 

measurements and measured with the laser vibrometer and differences of the spatially averaged radiated 

sound pressure reconstructed from camera measurements and laser vibrometer measurements and measured 

with microphones at the four reference resonance frequencies. 

Resonance 

Frequency 
(Hz) 

Cylinder 𝛥�̇� (dB) Vertical Plane 𝛥𝑝 (dB) Horizontal Plane 𝛥𝑝 (dB) 

𝛥𝑣𝑐𝑣 𝛥𝑝𝑐𝑚 𝛥𝑝𝑐𝑣 𝛥𝑝𝑣𝑚 𝛥𝑝𝑐𝑚 𝛥𝑝𝑐𝑣 𝛥𝑝𝑣𝑚 

618 +0.7 -2.0 +0.1 -2.0 -2.5 -0.6 -1.9 
659 +2.1 -1.9 +1.0 -2.9 -1.8 +1.3 -3.2 
964 +3.2 +0.4 +4.6 -4.2 +0.4 +4.4 -4.1 

1231 +2.7 +1.2 +2.0 -0.8 +1.0 +1.2 -0.2 

 

To conclude, the accuracy of the reconstructed vibration and sound fields have been quantified 

considering the differences in dB (thus ratios in linear terms) between the sum of the reconstructed and 

measured modulus-squared vibration velocities and between the sum of the reconstructed and measured 

modulus-squared sound pressures using the following formulae: 

 𝛥𝑣𝑟,𝑐𝑣(𝜔𝑟) = 10log10
∑𝑗 |𝑣𝑟,𝑐(𝑥𝑐𝑗,𝜔𝑟)|

2

∑𝑗 |𝑣𝑟,𝑣(𝑥𝑐𝑗,𝜔𝑟)|
2 , (37) 

 𝛥𝑝𝑐𝑚(𝜔𝑟) = 10log10
∑𝑖 |𝑝𝑐(𝑥𝑎𝑖,𝜔𝑟)|

2

∑𝑖 |𝑝𝑚(𝑥𝑎𝑖,𝜔𝑟)|
2 , (38) 

 𝛥𝑝𝑣𝑚(𝜔𝑟) = 10log10
∑𝑖 |𝑝𝑣(𝑥𝑎𝑖,𝜔𝑟)|

2

∑𝑖 |𝑝𝑚(𝑥𝑎𝑖,𝜔𝑟)|
2 , (39) 

 𝛥𝑝𝑐𝑣(𝜔𝑟) = 10log10
∑𝑖 |𝑝𝑐(𝑥𝑎𝑖,𝜔𝑟)|

2

∑𝑖 |𝑝𝑣(𝑥𝑎𝑖,𝜔𝑟)|
2 . (40) 
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Here 𝑣𝑟,𝑐(𝑥𝑐𝑗, 𝜔𝑟) and 𝑣𝑟,𝑣(𝑥𝑐𝑗, 𝜔𝑟) are the complex radial velocities at the j-th point of the vibration grid 

depicted in Figure 1b reconstructed from the camera measurements and measured with the laser vibrometer 

respectively. Also, 𝑝𝑐(𝑥𝑎𝑖, 𝜔𝑟), 𝑝𝑚(𝑥𝑎𝑖, 𝜔𝑟) and 𝑝𝑣(𝑥𝑎𝑖, 𝜔𝑟) are the complex sound pressures at the the i-

th point of the acoustic grids depicted in Figure 1b,c reconstructed from the camera and from the laser 

vibrometer measurements and measured with the array of microphones. The results summarised in Table 1 

show that, on average, the vibration field reconstructed from the camera acquisitions deviates by 0.7 to 3.2 

dB from that measured with the laser vibrometer. The differences are all positive, which suggests there 

could have been a systematic error, possibly due to the fact that the two measurements were taken not 

simultaneously and, actually, the laser vibration measurement lasted few hours compared to the few tents 

of minutes necessary for the camera acquisitions. Nevertheless the 0.7 to 3.2 dB errors confirm the potentials 

of vibration measurements with optical cameras at higher audio frequencies too. Moving to the sound 

radiation errors, the data in Table 1 indicate that, on average, the sound field reconstructed from the camera 

acquisitions deviates by 0.4 to 2.0 dB from that measured with the microphones array and by 0.6 to 4.0 dB 

from that reconstructed from laser vibrometer measurements. Overall, there are some differences between 

the two sets of errors, which are confirmed by the 0.2 to 4.2 dB differences between the sound field 

reconstructed from the laser vibrometer measurements and measured directly with the microphones array. 

There is no a clear correlation between the three sets of errors, which, yet again, may be the result of the 

fact that the three sets of measurements could not be implemented simultaneously and more importantly 

lasted for significantly different amount of time. Overall, the 0.4 to 2.0 dB errors found between the fields 

reconstructed with the cameras and those measured directly with the microphone array suggest that the 

proposed methodology to measure sound radiation with optical cameras can be a viable practical solution. 

Conclusions 

This paper has introduced a method for the measurement and reconstruction of 3D sound radiation of a 

closed shell structure using a single high-speed optical camera. The study has presented measurements of 

the flexural vibration and sound radiation fields taken on a baffled thin-walled cylinder model structure, 

which have been validated against vibration and acoustic measurements taken with a scanner laser 

vibrometer and a microphone array. The results of the measurement campaigns suggest that optical cameras 

can be suitably used to detect and reconstruct the sound radiation fields of closed shells. Overall, considering 

the four resonance frequencies analysed in the study, on average, the vibration field reconstructed from the 

camera acquisitions deviates by 0.7 to 3.2 dB from that measured with the laser vibrometer. Also, the 

acoustic field reconstructed from the camera acquisitions deviates by 0.4 to 2.0 dB from that measured with 

the microphones array. The proposed method enhances and simplifies the measurement and reconstruction 

processes in quite a few aspects, which are detailed below. 
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1) The proposed approach can be suitably implemented in situ without the need of moving the tested 

equipment or structure into acoustic facilities such as large reverberant or anechoic rooms. 

2) The optical camera measurement setup does not influence neither the vibration response nor the 

sound radiation of the tested equipment or structure. 

3) With sufficiently large and dampened measurement environments, the sound reflected by the outer 

walls and the presence of flanking sources and background noise have negligible effect on the 

reconstruction of the sound field radiated by the tested equipment or structure. 

4) The full-field camera acquisition allows for accurate identifications of both the whole flexural 

vibration field and the whole sound ration field at rather dense grids of points. 

5) The actual camera recordings are rather fast and can be completed in few minutes such that the 

measurement is not affected by variability of the structural response or other exogenous 

disturbances that may arise during long lasting experimental tests. 

6) The camera acquisitions can be employed to reconstruct the actual geometry of equipment or 

structures with complex geometry, in which case the sound radiation should be derived with 

Boundary Element Method and Finite element Method numerical approaches. 

The proposed method is characterised by some important limitations too, which can be summarised in the 

following three points. 

1) The vibration field is reconstructed in terms of displacements, whose amplitude is bound to be 

much smaller than velocities or accelerations, particularly at higher frequencies. 

2) The data postprocessing is rather cumbersome and requires rather powerful computing equipment 

for the derivation of both the vibration and acoustic fields. 

3) A speckled pattern should be bonded or painted on the radiating surfaces of the tested object such 

that the specific vibration points can be identified on the camera recordings, for example with DIC. 

It is expected that these limitations can be lifted to some extent both by further research on the optical 

measurement technique and on the data post processing to generate the flexural vibration and sound 

radiation fields and by the development of higher speed and higher resolution cameras such that the positive 

features listed above can be fully exploited. In general, the measurement technique can prove be useful in 

practical applications where there is an interest into the identification of the whole radiation field. Also, it 

can be employed to detect the spectrum of the total sound power radiation by partitions or machinery housed 

in closed shells. 
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Appendix A. MatLab code for the derivation of the sound radiation field 

This appendix reports the MatLab codes used to derive the sound radiation field from the flexural vibration 

of the cylinder measured with optical methods as discussed in Section 2. 

 

function p=acoust_press(r,theta,z, a, sourcethetaz, sourcev, f0, c0, rho0, S, M, tol, Madd) 
 

% Computes the contribution of all source elements 
% to the target at r,theta,z. 
% r,theta,z, coordinates of the target point 
% a cylinder radius 
% sourcethetaz Ne x 2 matrix with the theta, z coordinates of the source 
%   elements on the cylinder 
% sourcev Ne x 1 vector with the velocities of the source points in sourcethetaz 
% f0 frequency 
% c0 speed of sound 
% rho0 density of medium 
% S area element 
% M number of ponts between 0 and k (default M=180) 
% tol tolerance to stop integration (default tol=1e-4) 
% Madd additional terms for kz beyond k - imaginary argument (default Madd=1000) 
 

if nargin==10 
    M=180; 
    tol=1e-4; 
    Madd=1000; 
end 
 

Ne=size(sourcethetaz,1); 
p=0; 
 

for i=1:Ne 
    thetas=sourcethetaz(i,1); 
    zz=sourcethetaz(i,2); 
    v=sourcev(i); 
    p=p+zij(r,theta,z, a, thetas, zz, f0, c0, rho0, S, v, M, tol, Madd); 
end 
 

 

 

function p=zij(r,theta,z, a, thetas, zz, f0, c0, rho0, S, v, M, tol, Madd) 
 

% Computes the contribution of a single source element 
% at a, thetas, zz to the target at r,theta,z 
% r,theta,z, coordinates of the target point 
% a, thetas, zz coordinates of source point, with a cylinder radius 
% f0 frequency 
% c0 speed of sound 
% rho0 
% S area element 
% v velocity of source element 
% M number of integration points between 0 and k (default M=180) 
% tol tolerance to stop integration (default tol=1e-4) 
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% Madd additional terms for kz beyond k - imaginay argument (default Madd=1000) 
 

if nargin==11 
    M=180; 
    tol=1e-4; 
    Madd=1000; 
end 
 

omega=2*pi*f0; 
k=omega/c0; 
delta=k/M; 
 

p=-1i*rho0*omega*S*v*delta/(2*pi^2); 
 

small_disp=delta/20; 
n=0; 
kz=(0:M+Madd-1)*delta+small_disp; 
arg1=(sqrt(k^2-kz.^2)*a); 
 

arg2=(sqrt(k^2-kz.^2)*r); 
idxr=find(real(arg1)~=0); 
idxi=find(real(arg1)==0); 
 

add=sum((cos(kz(idxr)*(z-zz)).*besselh(n,2,arg2(idxr)))./... 
    (arg1(idxr).*dbesselh(n, 2, arg1(idxr)))); 
add=add+sum((cos(kz(idxi)*(z-zz)).*besselk(n,abs(arg2(idxi))))./... 
    (abs(arg1(idxi)).*dbesselk(n, abs(arg1(idxi)))) ); 
 

en=2; 
while (1) 
    n=n+1; 
    addi=en*cos(n*(theta-thetas))*sum( (cos(kz(idxr)*(z-zz)).*besselh(n,2,arg2(idxr)))./... 
        (arg1(idxr).*dbesselh(n, 2, arg1(idxr))) ); 
    addi=addi+ en*cos(n*(theta-thetas))... 
        *sum( (cos(kz(idxi)*(zz)).*besselk(n,abs(arg2(idxi))))./... 
        (abs(arg1(idxi)).*dbesselk(n, abs(arg1(idxi)))) ); 
 

    add=add+addi; 
 

    if ((abs((addi))<tol*abs(add)) || (n>50)) % limit sum to n=50 
        break; 
    end 
 

end 
 

p=p*add; 
 

 

 

function y=dbesselh(n,type,z) 
 

% Computes the derivative of the Hankel function. 
 

y=0.5*( besselh(n-1,type,z)  - besselh(n+1,type,z) ); 
 

function y=dbesselk(n,z) 
 

% Computes the derivative of the modified Bessel function of the second kind 
 

y=-0.5*( besselk(n-1,z)  + besselk(n+1,z) ); 
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